Connection probabilities for Ising model and their relation to Dyson's circular ensemble

Hao Wu

Tsinghua University, China

2023. 6. 28

Outline

Ising Model

Pure Partition Functions

Opposite the second of the

Table of contents

Ising Model

Pure Partition Functions

Dyson's Circular Ensemble

Ising model

Ising model [Lenz 1920]

A model for ferromagnet, to understand the phase transition.

- G = (V, E) a finite graph
- $\sigma \in \{\ominus, \oplus\}^V$
 - $H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$

Ising model is the probability measure of inverse temperature $\beta>0$:

$$\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))$$

Ising model

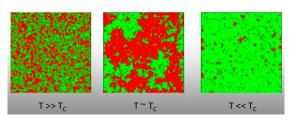
Ising model [Lenz 1920]

A model for ferromagnet, to understand the phase transition.

- G = (V, E) a finite graph
- $\sigma \in \{\ominus, \oplus\}^V$
- $H(\sigma) = -\sum_{X \sim y} \sigma_X \sigma_Y$

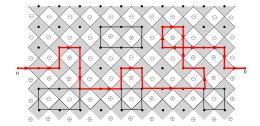
Ising model is the probability measure of inverse temperature $\beta>0$:

$$\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))$$

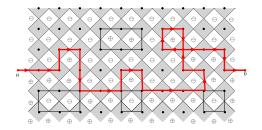


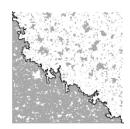
- $\beta > \beta_c$: ordered
- $\beta \approx \beta_c$: critical
- $\beta < \beta_c$: chaotic

Conformal invariance of interfaces

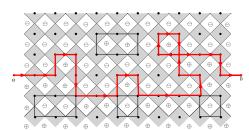


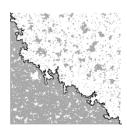
Conformal invariance of interfaces





Conformal invariance of interfaces

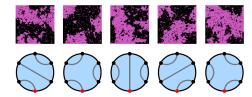




Stanislav Smirnov

Theorem [Chelkak-Smirnov et al. Invent. 2012]

The interface in critical Ising model on \mathbb{Z}^2 with Dobrushin boundary conditions converges weakly to SLE_3 .



Theorem [Peltola-W. AAP 2023+]

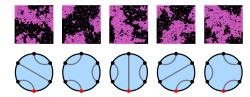
The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; \textit{\textbf{X}}_{1}, \ldots, \textit{\textbf{X}}_{2N})}{\mathcal{Z}_{\textit{lsing}}(\Omega; \textit{\textbf{X}}_{1}, \ldots, \textit{\textbf{X}}_{2N})}, \quad \mathcal{Z}_{\textit{lsing}} = \sum_{\alpha \in \mathsf{LP}_{N}} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

Hao Wu (THU)

Ising and Dyson



Theorem [Peltola-W. AAP 2023+]

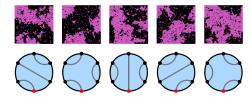
The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; \textit{\textbf{X}}_{1}, \ldots, \textit{\textbf{X}}_{2N})}{\mathcal{Z}_{\textit{lsing}}(\Omega; \textit{\textbf{X}}_{1}, \ldots, \textit{\textbf{X}}_{2N})}, \quad \mathcal{Z}_{\textit{lsing}} = \sum_{\alpha \in \mathsf{LP}_{N}} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

- Conjectured in [Bauer-Bernard-Kytölä, JSP 2005].
- Partially solved in [Izyurov, CMP 2015].

Hao Wu (THU)



Theorem [Peltola-W. AAP 2023+]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; \textit{\textbf{X}}_{1}, \ldots, \textit{\textbf{X}}_{2N})}{\mathcal{Z}_{\textit{lsing}}(\Omega; \textit{\textbf{X}}_{1}, \ldots, \textit{\textbf{X}}_{2N})}, \quad \mathcal{Z}_{\textit{lsing}} = \sum_{\alpha \in \mathsf{LP}_{N}} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

- Conjectured in [Bauer-Bernard-Kytölä, JSP 2005].
- Partially solved in [Izyurov, CMP 2015].
- Related to correlation functions in CFT.

Table of contents

Ising Model

Pure Partition Functions

Dyson's Circular Ensemble

Pure partition functions

 $\{\mathcal{Z}_{\alpha}: \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

PDE:
$$\left[\frac{\kappa}{2}\partial_i^2 + \sum_{j\neq i} \left(\frac{2}{x_j - x_i}\partial_j - \frac{2h}{(x_j - x_i)^2}\right)\right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0$$
, where $h = (6 - \kappa)/2\kappa$.

$$\mathbf{COV}: \mathcal{Z}(x_1,\ldots,x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1),\ldots,\varphi(x_{2N})).$$

$$\text{ASY}: \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}} \big(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N} \big), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else}. \end{cases}$$

Pure partition functions

 $\{\mathcal{Z}_{\alpha}: \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

PDE:
$$\left[\frac{\kappa}{2}\partial_i^2 + \sum_{j\neq i} \left(\frac{2}{x_j - x_i}\partial_j - \frac{2h}{(x_j - x_i)^2}\right)\right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0$$
, where $h = (6 - \kappa)/2\kappa$.

$$\mathbf{COV}: \mathcal{Z}(x_1,\ldots,x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1),\ldots,\varphi(x_{2N})).$$

$$\text{ASY}: \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}} \big(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N} \big), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else}. \end{cases}$$

Probability

- PDE : Itô's formula
- ASY : compatible

Pure partition functions

 $\{\mathcal{Z}_{\alpha}: \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

PDE:
$$\left[\frac{\kappa}{2}\partial_i^2 + \sum_{j\neq i} \left(\frac{2}{x_j - x_i}\partial_j - \frac{2h}{(x_j - x_j)^2}\right)\right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0$$
, where $h = (6 - \kappa)/2\kappa$.

$$\mathbf{COV}: \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})).$$

$$\text{ASY}: \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases}$$

Probability

CFT

PDE : Itô's formula

PDE : BPZ equations

ASY : compatible

ASY : fusion rules

Pure partition functions

 $\{\mathcal{Z}_{\alpha}: \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

PDE:
$$\left[\frac{\kappa}{2}\partial_i^2 + \sum_{j\neq i} \left(\frac{2}{x_j - x_j}\partial_j - \frac{2h}{(x_i - x_j)^2}\right)\right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0$$
, where $h = (6 - \kappa)/2\kappa$.

COV :
$$\mathcal{Z}(x_1,\ldots,x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1),\ldots,\varphi(x_{2N})).$$

$$\mathbf{ASY}: \lim_{\mathbf{X}_{j}, \mathbf{X}_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(\mathbf{X}_{1}, \dots, \mathbf{X}_{2N})}{(\mathbf{X}_{j+1} - \mathbf{X}_{j})^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}} \big(\mathbf{X}_{1}, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+2}, \dots, \mathbf{X}_{2N} \big), & \text{if } \{j, j+1\} \in \alpha; \\ \mathbf{0}, & \text{else}. \end{cases}$$

Probability

- PDE : Itô's formula
- ASY : compatible

CFT

- PDE : BPZ equations
- ASY: fusion rules

PDE

- PDE: 2N variables, 2N PDEs
- ASY: boundary value?

Pure partition functions

 $\{\mathcal{Z}_{\alpha}: \alpha \in \mathsf{LP}\}\$ is a collection of smooth functions satisfying PDE, COV, ASY.

PDE:
$$\left[\frac{\kappa}{2}\partial_i^2 + \sum_{j\neq i} \left(\frac{2}{x_j - x_i}\partial_j - \frac{2h}{(x_j - x_i)^2}\right)\right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0$$
, where $h = (6 - \kappa)/2\kappa$.

$$\mathbf{COV}: \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})).$$

$$\text{ASY}: \lim_{X_j, X_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else}. \end{cases}$$

Probability

PDE : Itô's formula

ASY : compatible

CFT

PDE : BPZ equations

ASY : fusion rules

PDE

- PDE: 2N variables, 2N PDEs
- ASY: boundary value?

Questions

Existence and uniqueness?

Uniqueness [Flores-Kleban, CMP 2015]

Fix $\kappa \in (0,8)$. If there exist collections of smooth functions satisfying PDE, COV and ASY, they are (essentially) unique.

Uniqueness [Flores-Kleban, CMP 2015]

Fix $\kappa \in (0, 8)$. If there exist collections of smooth functions satisfying PDE, COV and ASY, they are (essentially) unique.

Existence

- $\kappa \in (0,8) \setminus \mathbb{Q}$ [Kytölä-Peltola, CMP 2016]
- $\kappa \in (0,4]$ [Peltola-W. CMP 2019, Beffara-Peltola-W. AOP 2021]
- $\kappa \in (0, 6]$ [W. CMP 2020]

- Coulumb gas techniques
- Global multiple SLEs
- Hypergeometric SLE

Uniqueness [Flores-Kleban, CMP 2015]

Fix $\kappa \in (0,8)$. If there exist collections of smooth functions satisfying PDE, COV and ASY, they are (essentially) unique.

Existence

- $\kappa \in (0,8) \setminus \mathbb{Q}$ [Kytölä-Peltola, CMP 2016]
- $\kappa \in (0,4]$ [Peltola-W. CMP 2019, Beffara-Peltola-W. AOP 2021]
- $\kappa \in (0,6]$ [W. CMP 2020]

- Coulumb gas techniques
- Global multiple SLEs
- Hypergeometric SLE

9/19

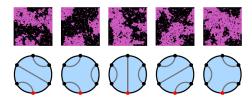
Theorem [W. CMP 2020]

Fix $\kappa \in (0,6]$. The pure partition functions are the recursive collection $\{\mathcal{Z}_{\alpha}: \alpha \in \cup_{N} \mathsf{LP}_{N}\}$ of smooth functions $\mathcal{Z}_{\alpha}: \mathfrak{X}_{2N} \to \mathbb{R}$ uniquely determined by the following properties :

PDE, COV, ASY as well as PLB:

$$0<\mathcal{Z}_{\alpha}(x_1,\ldots,x_{2N})\leq \prod_{\{a,b\}\in\alpha}|x_b-x_a|^{-2h},\quad\forall (x_1,\ldots,x_{2N})\in\mathfrak{X}_{2N}.$$

 $\{\mathcal{Z}_{\alpha}: \alpha \in \mathsf{LP}_{\mathit{N}}\}$ is linearly independent and forms a basis for the solution space.



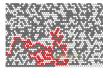
Theorem [Peltola-W. AAP 2023+]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

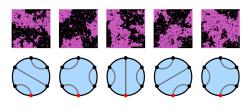
$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; \textit{\textbf{X}}_{1}, \dots, \textit{\textbf{X}}_{2N})}{\mathcal{Z}_{\textit{lsing}}(\Omega; \textit{\textbf{X}}_{1}, \dots, \textit{\textbf{X}}_{2N})}, \quad \mathcal{Z}_{\textit{lsing}} = \sum_{\alpha \in \mathsf{LP}_{N}} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

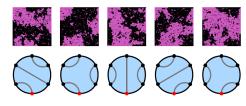
Conformal invariance in 2D critical lattice models



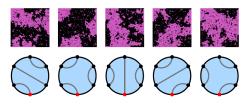
- Loop-erased random walk (LERW) : $\kappa = 2$ [Lawler-Schramm-Werner, AOP 2004]
- Ising model : $\kappa = 3$ [Chelkak-Smirnov et al. 2012]
- ullet Level lines of GFF : $\kappa=4$ [Schramm-Sheffield, ACTA 2009]
- FK-Ising model : $\kappa = 16/3$ [Chelkak-Smirnov et al. 2012]
- Percolation : $\kappa = 6$ [Smirnov 2001]
- Uniform spanning tree (UST) : $\kappa = 8$ [Lawler-Schramm-Werner, AOP 2004]



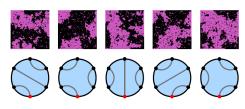
 \bullet Multiple LERWs in UST : $\kappa=$ 2. [Karrila-Kytölä-Peltola, CMP 2019]



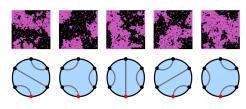
- \bullet Multiple LERWs in UST : $\kappa=$ 2. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]



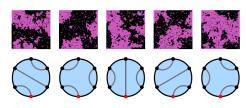
- ullet Multiple LERWs in UST : $\kappa=2$. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]
- Multiple level lines of GFF : $\kappa=4$. [Peltola-W. CMP 2019], [Ding-Wirth-W. AIHP 2022], [Liu-W. EJP 2021]



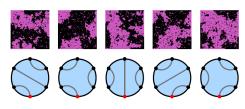
- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]
- Multiple level lines of GFF : $\kappa=4$. [Peltola-W. CMP 2019], [Ding-Wirth-W. AIHP 2022], [Liu-W. EJP 2021]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W. 2022]



- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]
- Multiple level lines of GFF : $\kappa=4$. [Peltola-W. CMP 2019], [Ding-Wirth-W. AIHP 2022], [Liu-W. EJP 2021]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W. 2022]
- Multiple percolation interfaces : $\kappa =$ 6. [Liu-Peltola-W. 2021]



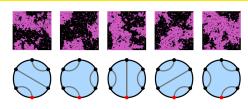
- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]
- Multiple level lines of GFF : $\kappa=4$. [Peltola-W. CMP 2019], [Ding-Wirth-W. AIHP 2022], [Liu-W. EJP 2021]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W. 2022]
- Multiple percolation interfaces : $\kappa =$ 6. [Liu-Peltola-W. 2021]
- Multiple Peano curves in UST : $\kappa = 8$. [Han-Liu-W. 2020], [Liu-Peltola-W. 2021], [Liu-W. Bernoulli 2023]



- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]
- Multiple level lines of GFF : $\kappa=4$. [Peltola-W. CMP 2019], [Ding-Wirth-W. AIHP 2022], [Liu-W. EJP 2021]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W. 2022]
- Multiple percolation interfaces : $\kappa =$ 6. [Liu-Peltola-W. 2021]
- Multiple Peano curves in UST : $\kappa=8$. [Han-Liu-W. 2020], [Liu-Peltola-W. 2021], [Liu-W. Bernoulli 2023]

Strategy:

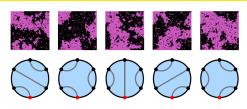
1 Step 1 : Proper holomorphic observable ϕ .



- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]
- Multiple level lines of GFF : $\kappa=4$. [Peltola-W. CMP 2019], [Ding-Wirth-W. AIHP 2022], [Liu-W. EJP 2021]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W. 2022]
- Multiple percolation interfaces : $\kappa =$ 6. [Liu-Peltola-W. 2021]
- Multiple Peano curves in UST : $\kappa=8$. [Han-Liu-W. 2020], [Liu-Peltola-W. 2021], [Liu-W. Bernoulli 2023]

Strategy:

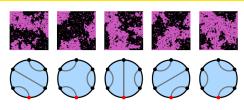
- **1** Step 1 : Proper holomorphic observable ϕ .
- ② Step 2 : A single interfaces \sim Loewner chain associated to \mathcal{Z} .



- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]
- Multiple level lines of GFF : $\kappa=4$. [Peltola-W. CMP 2019], [Ding-Wirth-W. AIHP 2022], [Liu-W. EJP 2021]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W. 2022]
- ullet Multiple percolation interfaces : $\kappa=$ 6. [Liu-Peltola-W. 2021]
- Multiple Peano curves in UST : $\kappa=8$. [Han-Liu-W. 2020], [Liu-Peltola-W. 2021], [Liu-W. Bernoulli 2023]

Strategy:

- **1** Step 1 : Proper holomorphic observable ϕ .
- ② Step 2 : A single interfaces \sim Loewner chain associated to \mathcal{Z} .
- **3** Step 3 : Fine analysis on the martingale $\mathcal{Z}_{\alpha}/\mathcal{Z}$.



- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019]
- Multiple Ising interfaces : $\kappa =$ 3. [Peltola-W. AAP 2023+]
- Multiple level lines of GFF : $\kappa=4$. [Peltola-W. CMP 2019], [Ding-Wirth-W. AlHP 2022], [Liu-W. EJP 2021]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W. 2022]
- Multiple percolation interfaces : $\kappa =$ 6. [Liu-Peltola-W. 2021]
- Multiple Peano curves in UST : $\kappa=8$. [Han-Liu-W. 2020], [Liu-Peltola-W. 2021], [Liu-W. Bernoulli 2023]

Strategy:

- **1** Step 1 : Proper holomorphic observable ϕ .
- ② Step 2 : A single interfaces \sim Loewner chain associated to \mathcal{Z} .
- § Step 3 : Fine analysis on the martingale $\mathbb{Z}_{\alpha}/\mathbb{Z}$.

Consequence : given the connectivity α , a single interface \sim Loewner chain associated to \mathcal{Z}_{α} :

$$\mathrm{d}W_t = \mathrm{d}B_t + \partial_j \log \mathcal{Z}_{\alpha}(V_t^1, \dots, V_t^{j-1}, W_t, V_t^{j+1}, \dots, V_t^{2N}) \mathrm{d}t.$$

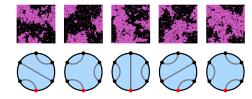
Table of contents

Ising Model

Pure Partition Functions

Oyson's Circular Ensemble

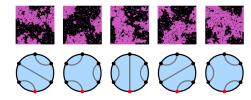
Usual parameterization vs common parameterization



Recall : given the connectivity α , a single interface \sim Loewner chain associated to \mathcal{Z}_{α} :

$$\mathrm{d}W_t = \mathrm{d}B_t + \partial_j \log \mathcal{Z}_{\alpha}(V_t^1, \dots, V_t^{j-1}, W_t, V_t^{j+1}, \dots, V_t^{2N}) \mathrm{d}t.$$

Usual parameterization vs common parameterization



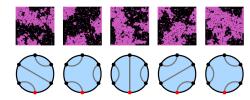
Recall : given the connectivity α , a single interface \sim Loewner chain associated to \mathcal{Z}_{α} :

$$\mathrm{d}W_t = \mathrm{d}B_t + \partial_j \log \mathcal{Z}_{\alpha}(V_t^1, \dots, V_t^{j-1}, W_t, V_t^{j+1}, \dots, V_t^{2N}) \mathrm{d}t.$$

From the upper-half plane to the unit disc :

$$\begin{split} \mathcal{G}_{\alpha}(\theta^1,\dots,\theta^{2N}) &= \mathcal{Z}_{\alpha}(\mathbb{D}; \exp(2\mathrm{i}\theta^1),\dots,\exp(2\mathrm{i}\theta^{2N})), \\ \mathrm{d}\xi_t &= \mathrm{d}B_t + \partial_i \log \mathcal{G}_{\alpha}(V_t^1,\dots,V_t^{j-1},\xi_t,V_t^{j+1},\dots,V_t^{2N}) \mathrm{d}t. \end{split}$$

Usual parameterization vs common parameterization



Recall : given the connectivity α , a single interface \sim Loewner chain associated to \mathcal{Z}_{α} :

$$\mathrm{d}W_t = \mathrm{d}B_t + \partial_j \log \mathcal{Z}_{\alpha}(V_t^1, \dots, V_t^{j-1}, W_t, V_t^{j+1}, \dots, V_t^{2N}) \mathrm{d}t.$$

From the upper-half plane to the unit disc :

$$\mathcal{G}_{\alpha}(\theta^1,\ldots,\theta^{2N}) = \mathcal{Z}_{\alpha}(\mathbb{D}; \exp(2i\theta^1),\ldots,\exp(2i\theta^{2N})),$$

$$\mathrm{d}\xi_t = \mathrm{d}B_t + \partial_j \log \mathcal{G}_{\alpha}(V_t^1, \dots, V_t^{j-1}, \xi_t, V_t^{j+1}, \dots, V_t^{2N}) \mathrm{d}t.$$

Fix $a = 2/\kappa$. Under a-common parameterization :

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \partial_j \log \mathcal{G}_{\alpha}(\theta_t^1, \dots, \theta_t^{2N}) \mathrm{d}t + a \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N, t < T,$$

where $\{B^j\}_{1 \le j \le 2N}$ are independent Brownian motions and T is the collision time.

Dyson's circular ensemble

Fix $a=2/\kappa$. Under a-common parameterization :

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \partial_j \log \mathcal{G}_\alpha(\theta_t^1, \dots, \theta_t^{2N}) \mathrm{d}t + a \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N, t < T, \tag{1}$$

where $\{B^j\}_{1 \le j \le 2N}$ are independent Brownian motions and T is the collision time.

Hao Wu (THU) Ising and Dyson

15/19

Dyson's circular ensemble

Fix $a = 2/\kappa$. Under a-common parameterization :

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \partial_j \log \mathcal{G}_{\alpha}(\theta_t^1, \dots, \theta_t^{2N}) \mathrm{d}t + a \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N, t < T, \tag{1}$$

where $\{B^j\}_{1 \le j \le 2N}$ are independent Brownian motions and T is the collision time.

Proposition [Feng-W.-Yang 2023]

Fix $\kappa \in (0,4]$ and $a=2/\kappa$. The solution $\theta_t=(\theta_t^1,\dots,\theta_t^{2N})$ to (1) conditioned on $\{T>s\}$ converges in total variation distance as $s\to\infty$ to 2N radial Bessel process

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + 2a\sum_{k\neq j}\cot(\theta_t^j - \theta_t^k)\mathrm{d}t, \quad 1 \leq j \leq 2N, \tag{2}$$

whose invariant density is called Dyson's circular ensemble [Dyson, J. Math. Phys. 1962]:

$$f(\theta^1, \dots, \theta^{2N}) \propto \prod_{1 \le j < k \le 2N} |\sin(\theta^k - \theta^j)|^{4a}.$$
 (3)

Dyson's circular ensemble

Fix $a = 2/\kappa$. Under a-common parameterization :

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \partial_j \log \mathcal{G}_{\alpha}(\theta_t^1, \dots, \theta_t^{2N}) \mathrm{d}t + a \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N, t < T, \tag{1}$$

where $\{B^j\}_{1 \le j \le 2N}$ are independent Brownian motions and T is the collision time.

Proposition [Feng-W.-Yang 2023]

Fix $\kappa \in (0,4]$ and $a=2/\kappa$. The solution $\theta_t=(\theta_t^1,\dots,\theta_t^{2N})$ to (1) conditioned on $\{T>s\}$ converges in total variation distance as $s\to\infty$ to 2N radial Bessel process

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + 2a\sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \le j \le 2N, \tag{2}$$

whose invariant density is called Dyson's circular ensemble [Dyson, J. Math. Phys. 1962] :

$$f(\theta^1, \dots, \theta^{2N}) \propto \prod_{1 \le j < k \le 2N} |\sin(\theta^k - \theta^j)|^{4a}.$$
 (3)

 $\label{eq:Keyingredients: PTRF 2021} \end{center}, \end{center} PTRF 2021], \end{center}, \end{center} 2N-time local martingale: \end{center}$

$$M_{m{t}}^{lpha} = g_{m{t}}'(0)^{-2N ilde{b}} \prod_{j=1}^{2N} h_{m{t},j}'(\xi_{t_j}^j)^b g_{m{t},j}'(0)^{ ilde{b}} imes \mathcal{G}_{lpha}(\theta_{m{t}}^1,\ldots,\theta_{m{t}}^{2N}) \exp\left(\frac{c}{2} \sum_{j=1}^{2N} \mu_{m{t}}^j\right).$$

Applications: estimates for multiple SLEs

Theorem [Feng-W.-Yang 2023]

Fix $\kappa \in (0,4]$. Fix $\theta^1 < \dots < \theta^{2N} < \theta^1 + \pi$ and write $\theta = (\theta^1,\dots,\theta^{2N})$. We denote by $(\gamma_1,\dots,\gamma_N) \sim \mathbb{P}^{(\theta)}_\alpha$ the law of chordal N-SLE $_\kappa$ in polygon $(\mathbb{D};\exp(2\mathrm{i}\theta^1),\dots,\exp(2\mathrm{i}\theta^{2N}))$ associated to link pattern $\alpha \in \mathsf{LP}_N$. We have

$$\mathbb{P}_{\alpha}^{(\boldsymbol{\theta})}\left[\operatorname{dist}(0,\gamma_{j})< r, 1\leq j\leq N\right] = CG_{\alpha}(\boldsymbol{\theta})r^{A_{2N}}(1+O(r^{u})), \quad \text{as } r\to 0+,$$

where dist is Euclidean distance.

A_{2N} is 2N-arm exponent :

$$A_{2N} = \frac{16N^2 - (4 - \kappa)^2}{8\kappa};$$

• G_{α} is Green's function for chordal N-SLE_{κ}:

$$G_{\alpha}(\theta^1,\ldots,\theta^{2N}):=rac{\mathcal{G}_*(\theta^1,\ldots,\theta^{2N})}{\mathcal{G}_{\alpha}(\theta^1,\ldots,\theta^{2N})},$$

where \mathcal{G}_* is the partition function for 2N-sided radial SLE_κ :

$$\mathcal{G}_*(\theta^1,\dots,\theta^{2N}) := \prod_{1 \leq j < k \leq 2N} |\sin(\theta^k - \theta^j)|^{2/\kappa};$$

• $C \in (0,\infty)$ is a constant depending on κ, N, α and u>0 is a constant depending on κ, N .

Applications: estimates for multiple SLEs

Theorem [Feng-W.-Yang 2023]

Fix $\kappa \in (0,4]$. Fix $\theta^1 < \dots < \theta^{2N} < \theta^1 + \pi$ and write $\theta = (\theta^1,\dots,\theta^{2N})$. We denote by $(\gamma_1,\dots,\gamma_N) \sim \mathbb{P}_{\alpha}^{(\theta)}$ the law of chordal $N\text{-SLE}_{\kappa}$ in polygon $(\mathbb{D};\exp(2\mathrm{i}\theta^1),\dots,\exp(2\mathrm{i}\theta^{2N}))$ associated to link pattern $\alpha \in \mathsf{LP}_N$. We have

$$\mathbb{P}_{\alpha}^{(\boldsymbol{\theta})}\left[\mathrm{dist}(0,\gamma_{j}) < r, 1 \leq j \leq N\right] = CG_{\alpha}(\boldsymbol{\theta})r^{A_{2N}}(1+O(r^{u})), \quad \text{as } r \rightarrow 0+,$$

where dist is Euclidean distance.

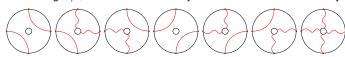
- Proved for N=1 and $\kappa \in (0,8)$: [Lawler-Rezaei, AOP 2015].
- Proved for N=2 and $\kappa\in(0,8)$: [Zhan, CMP 2020].
- We prove it for all $N \ge 1$ and α and $\kappa \in (0, 4]$.

Key ingredients: [Peltola-W. CMP 2019], [Healey-Lawler, PTRF 2021].

Hao Wu (THU)

We consider critical Ising model in annulus with boundary conditions:

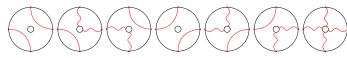
alternating \oplus/\ominus on the outer boundary and free on the inner boundary.



18/19

We consider critical Ising model in annulus with boundary conditions:

alternating \oplus/\ominus on the outer boundary and free on the inner boundary.



Theorem [Feng-W.-Yang 2023]

Suppose $(\eta_1, \dots, \eta_{2N}) \sim \mathbb{P}^{(\boldsymbol{\theta})}_{\text{Ising}}$. We have

$$\mathbb{P}_{\text{Ising}}^{(\boldsymbol{\theta})}[\eta_1, \dots, \eta_{2N} \text{ all hit } r \mathbb{D}] = r^{\frac{16N^2 - 1}{24} + o(1)}, \quad \text{as } r \to 0. \tag{4}$$

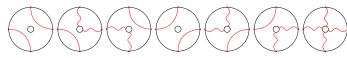
Conditioned on the event $\{\eta_1,\ldots,\eta_{2N} \text{ all hit } r\mathbb{D}\}$, the law $\mathbb{P}_{\mathrm{Ising}}^{(\theta)}$ converges in total variation distance to 2N-sided radial SLE₃ whose driving function is 2N radial Bessel process

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \frac{4}{3} \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N. \tag{5}$$

18/19

We consider critical Ising model in annulus with boundary conditions:

alternating \oplus/\ominus on the outer boundary and free on the inner boundary.



Theorem [Feng-W.-Yang 2023]

Suppose $(\eta_1, \ldots, \eta_{2N}) \sim \mathbb{P}^{(\boldsymbol{\theta})}_{\text{Ising}}$. We have

$$\mathbb{P}_{\text{Ising}}^{(\boldsymbol{\theta})}[\eta_1, \dots, \eta_{2N} \text{ all hit } r \mathbb{D}] = r^{\frac{16N^2 - 1}{24} + o(1)}, \quad \text{as } r \to 0. \tag{4}$$

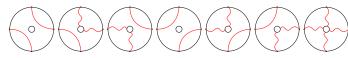
Conditioned on the event $\{\eta_1,\ldots,\eta_{2N} \text{ all hit } r\mathbb{D}\}$, the law $\mathbb{P}_{\mathrm{Ising}}^{(\theta)}$ converges in total variation distance to 2N-sided radial SLE₃ whose driving function is 2N radial Bessel process

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \frac{4}{3} \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N. \tag{5}$$

• Estimate (4) recovers [W. AOP 2018].

We consider critical Ising model in annulus with boundary conditions:

alternating \oplus/\ominus on the outer boundary and free on the inner boundary.



Theorem [Feng-W.-Yang 2023]

Suppose $(\eta_1, \ldots, \eta_{2N}) \sim \mathbb{P}^{(\boldsymbol{\theta})}_{\text{Ising}}$. We have

$$\mathbb{P}_{\text{Ising}}^{(\boldsymbol{\theta})}[\eta_1, \dots, \eta_{2N} \text{ all hit } r \mathbb{D}] = r^{\frac{16N^2 - 1}{24} + o(1)}, \quad \text{as } r \to 0. \tag{4}$$

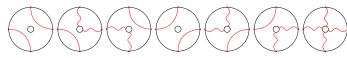
Conditioned on the event $\{\eta_1,\ldots,\eta_{2N} \text{ all hit } r\mathbb{D}\}$, the law $\mathbb{P}_{\mathrm{Ising}}^{(\theta)}$ converges in total variation distance to 2N-sided radial SLE₃ whose driving function is 2N radial Bessel process

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \frac{4}{3} \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N. \tag{5}$$

- Estimate (4) recovers [W. AOP 2018].
- 2N-sided radial SLE : [Healey-Lawler, PTRF 2021].

We consider critical Ising model in annulus with boundary conditions:

alternating \oplus/\ominus on the outer boundary and free on the inner boundary.



Theorem [Feng-W.-Yang 2023]

Suppose $(\eta_1, \ldots, \eta_{2N}) \sim \mathbb{P}^{(\boldsymbol{\theta})}_{\text{Ising}}$. We have

$$\mathbb{P}_{\text{Ising}}^{(\boldsymbol{\theta})}[\eta_1, \dots, \eta_{2N} \text{ all hit } r \mathbb{D}] = r^{\frac{16N^2 - 1}{24} + o(1)}, \quad \text{as } r \to 0. \tag{4}$$

Conditioned on the event $\{\eta_1,\ldots,\eta_{2N} \text{ all hit } r\mathbb{D}\}$, the law $\mathbb{P}_{\mathrm{Ising}}^{(\theta)}$ converges in total variation distance to 2N-sided radial SLE₃ whose driving function is 2N radial Bessel process

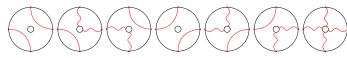
$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \frac{4}{3} \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N. \tag{5}$$

- Estimate (4) recovers [W. AOP 2018].
- 2N-sided radial SLE: [Healey-Lawler, PTRF 2021].

• Eq. (5) : [Cardy, J. Phys. A 2003]

We consider critical Ising model in annulus with boundary conditions:

alternating \oplus/\ominus on the outer boundary and free on the inner boundary.



Theorem [Feng-W.-Yang 2023]

Suppose $(\eta_1, \ldots, \eta_{2N}) \sim \mathbb{P}^{(\boldsymbol{\theta})}_{\text{Ising}}$. We have

$$\mathbb{P}_{\text{Ising}}^{(\boldsymbol{\theta})}[\eta_1, \dots, \eta_{2N} \text{ all hit } r \mathbb{D}] = r^{\frac{16N^2 - 1}{24} + o(1)}, \quad \text{as } r \to 0. \tag{4}$$

Conditioned on the event $\{\eta_1,\ldots,\eta_{2N} \text{ all hit } r\mathbb{D}\}$, the law $\mathbb{P}_{\mathrm{Ising}}^{(\theta)}$ converges in total variation distance to 2N-sided radial SLE₃ whose driving function is 2N radial Bessel process

$$\mathrm{d}\theta_t^j = \mathrm{d}B_t^j + \frac{4}{3} \sum_{k \neq j} \cot(\theta_t^j - \theta_t^k) \mathrm{d}t, \quad 1 \leq j \leq 2N. \tag{5}$$

- Estimate (4) recovers [W. AOP 2018].
- 2N-sided radial SLE: [Healey-Lawler, PTRF 2021].

• Eq. (5) : [Cardy, J. Phys. A 2003]

Thanks!

- **(a)** [Peltola-W. CMP 2019] Global and local multiple SLEs for $\kappa \le 4$ and connection probabilities for level lines of GFF. *Comm. Math. Phys.* 366(2): 469-536, 2019.
- [W. CMP 2020] Hypergeometric SLE: conformal Markov characterization and applications Comm. Math. Phys. 374(2): 433-484, 2020.
- [Beffara-Peltola-W. AOP 2021] On the uniqueness of global multiple SLEs Ann. Probab. 49(1): 400-434, 2021.
- [Liu-W. EJP 2021] Scaling limits of crossing probabilities in metric graph GFF Electron. J. Probab. 26: article no. 37. 1-46. 2021.
- [Ding-Wirth-W. AIHP 2022] Crossing estimates from metric graph and discrete GFF Ann. Inst. H. Poincaré Probab. Statist. 58(3):1740-1774, 2022.
- [Liu-W. Bernoulli 2023] Loop-erased random walk branch of uniform spanning tree in topological polygons. Bernoulli. 29(2): 1555-1577, 2023.
- [Peltola-W. AAP 2023+] Crossing probabilities of multiple Ising interfaces Ann. Appl. Probab. to appear. 2023+
- **1** [Han-Liu-W. 2020] Hypergeometric SLE with $\kappa=8$: convergence of UST and LERW in topological rectangles. arXiv:2008.00403. 2020.
- [Liu-Peltola-W. 2021] Uniform spanning tree in topological polygons, partition functions for SLE(8), and correlations in c = −2 logarithm CFT. arXiv :2108.04421. 2021.
- [Feng-Peltola-W. 2022] Connection probabilities of multiple FK-Ising interfaces. arXiv:2205.08800, 2022.
- [Feng-W.-Yang 2023] Multiple Ising interfaces in annulus and 2N-sided radial SLE. arXiv :2302.09124. 2023.